


## **AGIS Visual Tool**

- · Where is this data coming from?
- What is the accuracy?
- What are the benefits?
- What are some of the current limitations?
- Engineering Brief #91

Surface Analysis and
Visualization

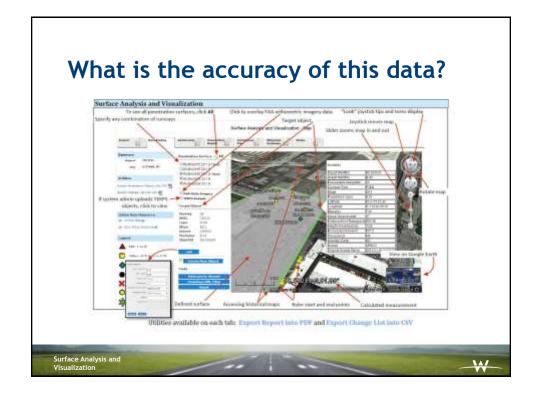
# Where is this data coming from?

- National Airspace Systems Resources (NASR)
  - 56-day cycle
  - Analysis through SAV only as good as this data
  - May not reflect recent changes
    - Time delays between finishing a project and NASR update through AGIS



# Where is this data coming from?

- Airports GIS System
- Existing obstacle databases
  - Digital Obstacle File (DOF)
  - OE/AAA (Merging of databases)




# What is the accuracy of this data?

- Best answer is it varies
- AC 150/5300-18B specifies accuracy of features
- FAA Order 8260.19F specifies obstacle accuracy

Surface Analysis and Visualization





### What are benefits?


- Getting ahead of the dreaded FAA letter
  - Date of letter and requested date of response was only 10 days

Surface Analysis and Visualization



#### What are benefits?

Tool to enter new/proposed obstacles



4

#### What are benefits?

Streamlined process for updating obstacles

| Object Identifies 12-Amplications 16265 (23-1 Major) | Object Type<br>TANK   | Object Verification |                | Lutttade       | Longitude          | Rick Level |
|------------------------------------------------------|-----------------------|---------------------|----------------|----------------|--------------------|------------|
|                                                      |                       | # vals              | © feet variet  | 11 54 48 53.88 | m 147.81<br>13.32  | negh       |
| 18390<br>(201 Maps)                                  | sunne                 | e Valid             | O have varied  | 11 84 48 12.77 | 10 247 E1<br>13 60 | rege       |
| 15-438/PORTSHIS-<br>15-403<br>(2011 Maps)            | 366VW122              | @ YM14              | © Not valid    | 11 54 48 32.22 | H 147 B1<br>34.65  | Medium     |
| 15-AMPORTANCE<br>15684<br>[BO-T Blope]               | TREE                  | - Tald              | O THE SHIP     | 11 64 49 57.37 | W 147 S0<br>59.23  | Medium     |
| 14387<br>(23-1 Slope)                                | VERTICAL<br>STAUCTURE | # Yeld              | © feet valid   | N.64 42 56.70  | # 145 St<br>26.10  | medium     |
| 14263<br>(2011 Bope)                                 | TREE                  | # VHV               | O Not valid    | 11 64 49 48.52 | 10 147 49<br>27 30 | medium     |
| (20st Bope)                                          | TREE                  | @ Yald              | () Not varid   | 11 64 45 36.61 | W 147 21 0.79      | Liny       |
| S-AUREON FEBRUAR                                     | TREE                  | as Valid            | in feet varied | 11 64 40 36 33 | W 147 21 0.30      | 140        |

### What are current limitations?

Obstruction areas and obstacle buffers



17.1.6. OBJECT DENSITY SELECTION CRITERIA. In some cast, what allocance in the observed solution return linest dover neglectured recognises or independent observations representation. To minimize these extension, the following quickfluor must be followed in static for electric electrics:

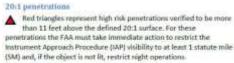
- If electeds the no required in the primary was in the 10,000 feet of an approach arm an
  increal action 100 feet of out of the decision decision in the control.
- If obserby this are required onesels the primary or first 1830 of an approach are set became within 500 fem of trait order. On lower, obserb may be marked, Olever, Bergood primary or approach obserbes martinal to extend becomes of fair close particular of highest obserby module of the primary or approach mans).
- When a exposed objection is constrain because of congestion, a replacement obstacle obstacles must
- Occasionally, additional electrature inflorences may be useful as representing notion electronic as not produce. While a represent electronic as not produce, inflorences media to electronic cleaning arterities cleaned by considered in the selection.



Surface Analysis and Visualization

Surface Analysis and Visualization

#### What are current limitations?


- Reporting removed or mitigated obstacles
  - Mitigation Summary provides an overview of all surface penetrations to update
  - What about obstacles that are not surface penetrations but may be in the future?
  - EB #91 has submit existing data AGIS projects
    - Not verified and may cause duplicate records



#### What are current limitations?

- Still in Beta phase
- Should include options to see all published obstacles to better determine

future risk



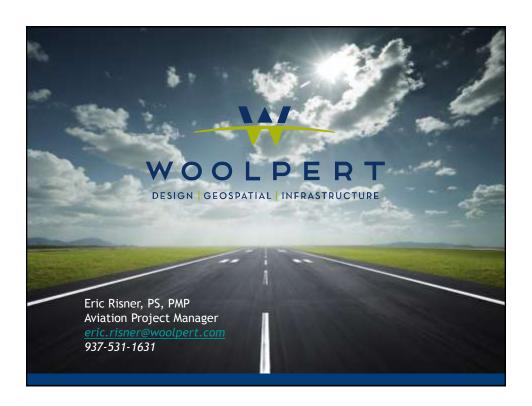
Veilow squares represent medium risk surface penetrations verified to be greater than 3 feet and up to and including 11 feet above the defined 20:1 surface. FAA is not required to take immediate action to restrict IAPs for these penetrations.

 Green diamonds represent low risk surface penetrations verified to be 3 feet or less above the defined 20:1 surface. FAA is not required to take immediate action to restrict IAPs for these penetrations.

Surface Analysis and Visualization



# **Engineering Brief 91**


- Establishes requirements on management of vegetation on or around an airport
  - Specifically discusses removal, topping and how to submit supporting data back to the FAA
  - Recommends an existing AGIS data project



# **Engineering Brief 91**

 Should be discussed beforehand the extent of updates and best approach



